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1. INTRODUCTION 

 

It has been known to be very difficult for robots to 
interact with a variety of environments including stiff 
one with one simple control algorithm and gain 
(Indri, and Tornambe, 1999; Nenchev, and Yoshida, 
1999). 
 
In order to address this problem, a nonlinear bang-
bang impact control ( NBBIC ) has been proposed by 
Lee (Lee, 1994; Lee, et al., 2003a, b).  Under NBBIC, 
a robot can successfully interact with an environment 
without changing control algorithm and control gains 
throughout all three modes: free space, transition and 
constrained motion. Experiments show that overall 
performance of NBBIC is superior or comparable to 
more complicated existing impact force control 
techniques (Lee, 1994; Lee, et al., 2003a, b). 
However, a formal presentation of stability analysis 
has not been made yet.  
 
In this paper, stability analysis of the nonlinear bang-
bang impact control is presented for multi degree of 
freedom robotic manipulators. Sufficient stability 
conditions have been derived based on the analysis in 

nL∞ space and their physical interpretation has been 
given.  
 
This paper is organized as follows: Section 2 
describes hybrid Natural Admittance/Time-Delay 
Control ( NAC/ TDC ) with the proposed bang-bang 

impact control. Section 3 presents the stability 
analysis of the NBBIC and discusses its physical 
implications, while Section 4 validates the NBBIC 
stability theorem through experiment and discusses 
noise effects. Section 5 discusses conclusions and 
suggestions for future work 
 
 

2. NONLINEAR BANG-BANG IMPACT 
CONTROL 

 
In this section, the hybrid NAC/TDC is presented 
(Lee, 1994; Lee, et al., 2003a, b), and a nonlinear 
bang-bang impact control strategy is explained for 
stability analysis (Lee, 1994; Lee, et al., 2003a, b). 
 
 

2.1 Hybrid Natural Admittance/Time Delay Control 
 

Hybrid Natural Admittance/Time Delay Control 
(NAC/TDC) is developed to enhance the robustness 
of NAC against modelling uncertainty and 
disturbance via time delay estimation (Lee, 1994; 
Lee, et al., 2003a, b). NAC obtains maximum target 
admittance within passivity constraint 
 
Let us consider the nonlinear dynamics of n degree 
of freedom robots 

t t t t t t t tsτ( ) = M(θ( ))θ( )+V(θ( ),θ( ))+g(θ( ))+τ ( )+d( ) ,(1) 
where t ∈R represents time. t ∈θ( ) nR and 

t ∈θ( ) nR represents joint angle and velocity vector, 



     

respectively. ×∈M(θ) n nR , ,  ∈V(θ,θ) G(θ) nR , and 
t ∈d( ) nR are an inertia matrix, Coriolis and 

centrifugal force vector, gravitational force vector, 
and the disturbance vector which includes viscous 
and Coulomb friction and external disturbances, 
respectively. , t ∈sτ τ( ) nR  are the external torque 
vector measured and the control torque vector 
applied to the joints, respectively. 
 
The simplest form of NAC/TDC (Lee, 1994; Lee, et 
al., 2003a, b) for the n degree of freedom robot 
above is 

( ) ] ( ) ( )t t L t L= − + − v cmd des des rτ( ) M G θ -θ +K e+B e+c θ -Mθ τ ,(2) 

where  
{ }-1( ) st M t t t t dt= ∫cmd s des des des desθ τ +K (θ ( )-θ( ))+B (θ ( )-θ( )) .(3) 

L is a small time-delay and can be regarded as a 
sampling time. ,t t ∈des desθ ( ) θ ( ) nR , and t ∈cmdθ ( ) nR  are 
desired joint position, velocity and the command 
joint velocity vector, respectively. ×∈M n nR  is a 
constant matrix representing the inertia estimate. 

sM ∈R and ×∈rc n nR  are the end-point mass obtained 
by system identification and the negative-definite 
constant position-feedback-gain matrix, respectively 
(Youcef-Toumi, and Ito, 1990).  ,, ×∈des desvG K B n nR are 
the diagonal constant velocity-feedback-gain matrix 
and the desired stiffness and damping matrices, 
respectively.  
 

In order to implement the control law only one 
system parameter, the inertia, needs to be estimated. 
The effect of measurement noise does not seriously 
affect system performance of NAC/TDC (Lee, 1994; 
Lee, et al., 2003b), since in discrete form TDC is 
equivalent to PID control and joint acceleration term 
turns into joint velocity term (Lee, et al., 1997).   
 

2.2 Nonlinear Bang-Bang Impact Control 
 
Even though the NAC/TDC yields good control 
performance during free and constrained motion, its 
performance is limited when a robot experiences 
impact.  Therefore, a nonlinear bang-bang impact 
controller is proposed to enhance the impact 
behavior of robots by using the NAC/TDC (Lee, 
1994; Lee, et al., 2003a, b).  The control strategy can 
be summarized as follows. During free-space motion, 
NAC/TDC is used.  During impact transient when 
contact is broken due to bouncing, no control input is 
applied; and when contact is made, NAC/TDC is 
used.  NAC/TDC is used again after contact is 
established.  NAC/TDC also brings a robot back into 
contact with an environment when it stops in free 
space due to the zero control input during contact 
transient.  This incident occurs if the restoring spring 
force cannot overcome friction and inertia of the 
robot under no control action after it bounces off 
from the environment.  The resulting control strategy 
for a multi-input multi-output ( MIMO ) system is 
described as follows. 
 
1) Unconstrained Motion: NAC/TDC 

If impactF<sF , then NAC/TDC                             (4) 
2) In contact Transition: Bang-Bang Control 

a) If the robot is in contact with the environment 
( swF>sF ), then NAC/TDC                                (5) 

b) If the robot is out of contact ( swF<sF ), then ( ) 0t =τ                             
(6) 

c) If swF<sF and ( ) thresholdt v<v ,  then NAC/TDC   (7) 
3) After Impact Transient: NAC/TDC  

If swF>sF  , then NAC/TDC                             (8) 
 

, ∈sF v nR  are sensed force and Cartesian velocity 
respectively. ,     impact sw thresholdF F and v∈ ∈R R are threshold 
values to detect impact, switching and zero velocity, 
respectively, and are dependent on the sensitivity of 
the torque and position sensors.  These values should 
be zero ideally, but they have certain threshold 
values in reality due to experimental noises. The 
NBBIC is very effective since it makes robots 
naturally dissipate their impact energy after they 
bounce off from the environment rather than exert 
excessive control input to reject impact disturbance. 
 
 

3. STABILITY ANALYSIS OF NONLINEAR 
BANG-BANG IMPACT CONTROL 

 
 

3.1 Grouping of Each Control Stage 
 
For stability analysis, the five stages, (4)-(8), have 
been categorized into three groups in table 1 
according to their physical characteristics and contact 
mode. The stability analysis was performed for each 
group separately. The stability condition for the 
transition from one group to the next can be derived 
from that of the next group it switched to by setting 
nonzero initial condition. Finite number of switching 
is guaranteed because velocity is reduced to a small 
value that cannot make bounce after 2nd impact 
(Appendix). 
 
 
3.2 NAC/TDC Error-ε Inequality 
 
In order to derive the stability condition of NBBIC, 
we first established the general inequality for 
NAC/TDC. The nonlinear dynamics of (1) for n  
degree of freedom robot can be divided into two 
terms, the known term and the unknown and/or 
uncertain nonlinear dynamics terms represented by 

( )t ∈H nR  as below. 
                         ( ) ( ) ( )t t t= +τ Mθ H ,                     (9) 

where  
( )( )t t t t t t t t= sH M(θ( ))-M θ( )+V(θ( ),θ( ))+G(θ( ))+d( )+τ ( ). 

(10) 
Likewise, the NAC/TDC of (2)can be described as 
follows. 

t t t L= + −τ( ) Mu( ) H( ) ,                     (11) 

Table 1 Grouping of control Stage 
Characteristics Group Physical Characteristics Mode Case

Group 1 - Before Contact 
- No external force Free space - 1 1 

2-c 
Group 2 - Nonzero external force Constrained space 2-a,3

Group 3 - Out of contact 
- No external force Free space - 2 2-b 

 
 ,≠ ≠

≠
e(0) 0, e(0) 0
e(0) 0

  All 
cases



     

where 
t t t t t tv cmd des des ru( )=G (θ ( )-θ( ))+K e( )+B e( )+c θ( )  ,  (12) 

where
 { }-1( ) st M t t t t dt=∫cmd s des des des desθ τ +K (θ ( )-θ( ))+B (θ ( )-θ( )) .(13) 

Subtracting (11) from (9) yields, 
t t t t L= −M(u( ) - θ( )) H( ) - H( ) .          (14) 

If we set  

                            t t t≡ε( ) u( ) - θ( ) ,                        (15) 
then (15) can be written as below. 

    ( ) ( )ˆt t t t t L= = −-1 -1ε( ) M H( ) - H( ) M H( ) - H( )    
(16) 

( )t ∈ε nR  is an estimation error vector between the 
nonlinear dynamics tH( ) and the estimated nonlinear 
dynamics ˆ tH( ).  ˆ tH( ) is estimated by using -t LH( ) , 
the value of nonlinear dynamics at time t-L.   
 
The substitution of (12) and (3) into (15) and 
mathematical manipulation yields the following error 
dynamics. The mathematical manipulation does not 
necessitate the initial value of 

cmdθ . 

   
( )

( )
-1 -1

-1

s s

s

M t dt M t
t t

t t t t M dt

∫

∫

v des v des des r

v des

r des des v des v s

G K e( ) + G B + K - c e( )
+ G + B e( ) + e( )
= ε( ) - c θ ( ) + θ ( ) + G θ ( ) - G τ

,(17) 

 

where ( )t t t= dese θ ( ) -θ( ). Equation (17) describes the 
time-delay estimation error ( )tε  in terms of the 
desired trajectories and the errors between the 
desired trajectories and the actual plant states and 
their derivatives. 
 
Lemma1.Error-ε Inequality: In the case of n degree 
of freedom robot under NAC/TDC in constrained 
space, if the desired trajectory and its derivatives are 
in nL∞

space and the external force 
sτ  is in nL∞

space, 
i.e., ( ), ( ) nt t L∞∈des desθ θ , ( ) nt L∞∈desθ and nL∞∈sτ , then the 
following inequalities can be obtained. In the case of 
impact, nL∞∈sτ  holds because 

0
sup ( ) 1 2a

t
t aδ

∞
>

= =sτ . 

( )a tδ  is the unit pulse function1. 
 

       

1 1 1 1
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3 3 3 3
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β γ η ρ
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β γ η ρ
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β γ η ρ
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≤ + + +
≤ + + +
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≤ + + +

s des

s des

s des

s des

s des

s des

e ε τ θ
e ε τ θ
e ε τ θ
e ε τ θ
e ε τ θ
e ε τ θ

,         (18) 

 

where 
Ie is the time integral of error. ,  , i i iβ γ η  are 

nL∞
gains of operator 

iH ,
iG ,

iR  ( 1 6i = ) and ,i iH G  
and 

iR  are operators as below. 

I I I

1 1 s 1 des

2 2 s 2 des

3 3 s 3 des

4 4 s 4 des

5 5 s 5 des

6 6 s 6 des

H :ε e G :τ e R :θ e
H :ε e G :τ e R :θ e
H :ε e G :τ e R :θ e
H :ε e G :τ e R :θ e
H :ε e G :τ e R :θ e
H :ε e G :τ e R :θ e

     (19) 

 

iρ ( 1 6i = ) is a constant related to the initial 
condition of errors. L∞

 gain of SISO linear operator 

iiP  is defined as 
0 2

( )ii i
p dτ τ∞

∫  where ( )iip τ is an 
impulse response of the system.  In MIMO case, nL∞

 

                                                 
1 

T∞
•  denotes truncated nL∞  norm of  ( )t• . 

gain of an operator Pis defined as 
0 2

( )
i
dτ τ∞

∫ P  where 

( )( ) ( )iiii
pτ τ=P 2.  

 
Proof of Lemma 1: First, we can obtain stable 
transfer function matrices between the error and ε, 
the error and external torque, and the error and 
desired trajectory by using proper control gains. Then, 
it can be said that initial condition related parts 
exponentially converge and are bounded. Second, the 
stable transfer function has finite nL∞

 gains ,  ,  i i iβ γ η  
( 1 6i = ).  Thus  (18) is obtained. 
 
 

3.3 ε- nL∞  Norm Bound 
 

In this section, nL
∞
upper bound of ε  is derived based 

on the grouping in table 1.  The analysis for the free 
space case of group 1 is presented first. 
Substituting (2), (12) and (15) into (16) yields the 
following equation3 (Hsia, and Gao, 1990). 
 

     

( )
1

1

-
        - -
        

t t t t t L
t t t L t L

t t t

−

− 




-1

des

s

ε( ) = (I - M ( )M)u( ) + (I - M ( )M)ε( )
+ M ( ) M( ) -e( ) +θ ( )
+V( ) + G( ) + τ ( )

   

(20) 

For derivation of Lemma 2-1 and 2-2, new variables 
are defined as follow. 
 

   ( )  ,          ( ) ( ) ( ),
( ) ( ) ( ),        ( ) ( ) ( ).

t t t t L
t t t t t t L

− −
= + −

-1∆ I - M M M = M M
Q V d Q = Q - Q

 (21) 

During the infinitesimally short time interval of 
collision, the joint position of a robotic system 
remains unchanged and joint velocities are finite 
(Pagilla, and Yu, 2001; Walker, 1999). Accordingly, 
Coriolis and centrifugal terms remain finite upon 
impact.  Thus ( )tQ  is bounded. 
 

Lemma 2-1. ε- nL∞ Norm Bound Inequality (Free 
space case): In the case of n  degree of freedom robot 
under NAC/TDC in free space, if the desired 
trajectory and its derivatives are in nL∞

space and the 
time difference of uncertainty including disturbance 
is also in nL∞

space, i.e., ( ), ( ), ( ) nt t t L∞∈des des desθ θ θ  and 
nL∞∈w , then the following inequality can be obtained. 

 

( )1 4 2 5 3 6 4 1 5 2 6 3 11 GT
µ δ β δ β δ β δ β δ β δ β ε ψ

∞
− − − − − − − ≤ , 

where 

( )
( )

2
1

1
1 1

2 2
1

3 2
1

4 2
1

5 2
1

6 2

1

1

 

( )
( )

( )
( )
( )

  ( ) ( )

      ( ) ( ) ( )

i

s

i

i

i

i

i

G

M
t t

t t
t t
t t
t t

t t

t t t L

µ
δ
δ
δ
δ
δ
δ

ψ

∞
−

∞
− −

∞
−

∞
−

∞
−

∞
−

∞

−

=
=
=

=
=
=

=

= −

+ − +

v des

v s des des r 2

v des 1

2

1

r des v des

des

∆
∆ G K
∆ G M B + K - c + M q ( )
∆ G + B + M q ( )
M q ( )
M q ( )
M M( )

∆c θ ∆G θ

M M θ( )
( ) ( )
( ) ( )

1 4 4 2 5 5

3 6 6 4 1 1

( ) ( ) ( )
      ( ) ( )
      ( ) ( )

T T

TT

t t t
t t
t t

δ η ρ δ η ρ
δ η ρ δ η ρ

∞

∞ ∞

∞∞

+ +
+ + + +
+ + + +

d

des des

des des

Q G w
θ θ
θ θ

 

                                                 
2 

2i
•  denotes induced 2 norm. 

3 •  denotes ( ) ( )t t L• •- - . 



     

( ) ( )5 2 2 6 3 3      ( ) ( )
T T

t tδ η ρ δ η ρ
∞ ∞

+ + + +des desθ θ (22) 

( ) ( ( ), ( ))t t t=d des desQ Q θ θ and ( ), ( )t t ×∈1 2q q n nR  are 
bounded functions of time. ∈w nR is uncertainty 
including disturbance. 
 
Proof of Lemma 2-1: The symbol , ( )t ×∈∆ M n nR and 

( )t ∈G nR  are sine and/or cosine functions of joint 
angles and thus they are bounded. ×∈M n nR and 

∈G nR are also bounded because they are the 
difference of bounded functions between time t and 
t-L. ( )tQ can be written as follows. 

             ( )( ), ( )) ( ) ( ), ( )t t t t t= +d qQ(θ θ Q O e e          (23) 
 

And we make the following assumption (Spong, and 
vidyasagar, 1987; Jung, et al., 2004).  
 

        ( )( ), ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t≅ + +q 1 2O e e q e q e w      (24) 
where ∈w nR  is disturbance. In the case of 

2L  space 
analysis, semiglobal stability is proved by using this 
assumption (Kang, et al., 2004)4. In this case, we can 
only show stability, a weak version of previous one. 
But L∞ analysis is practical because it includes 
persistent disturbance. 
Substituting (12), (13), (21) and (24) into (20) yields 
the following.   
 

( )( )
( )( )

( ) ( )
( )

1

1 1

1

1 1

1

-
      ( )
      ( ) ( ) )
      ( ) ( ) )

      - ( ) ( ) - ( ) ( )
     

It t L t
t t t

t t t
t t L t t L

t t t L t t

−

− −

−

− −

−

= +

− −

+ −

v s des

v s des des r 2

v des 1

2 1

r des v des

ε( ) ∆ε( ) G M K e ( )
+ ∆ G M B + K - c + M q ( ) e( )
+ ∆ G + B + M q e(
+ M q e( ) + M q e(

M M e( ) ∆c θ ∆G θ
1 ( )( ( ) ( ) ( ))t t t L t t t−+ −d dM M( )θ ( ) + Q + G + w

 (25) 

Take norms of both sides of (25).   Define each term 
1Gµ  and _ 1i Gδ ( 1 6)i =  as in (22), and 1_ 1Gψ  as below.  

 

1_ 1

1

( ) ( )

         ( )( ( ) ( ) ( ))
G t t

t t t L t t t

ψ
−

∞

= −

+ −

r des v des

d d

∆c θ ∆G θ

M M( )θ ( )+Q +G +w
(26) 

Then we can derive the following inequality.  
 

 
(

)

1 2

3 4 5

6 1_ 1

( ) ( ) ( ) ( )
               ( ) ( ) ( )
               ( )

T T T T

T TT

GT

t t L t t
t t L t L
t L

µ δ δ
δ δ δ
δ ψ

∞ ∞ ∞ ∞

∞ ∞∞

∞

≤ − + +

+ + − + −

+ − +

Iε ε e e
e e e
e

(27) 

 

From (22) and Lemma 1, we get 5 
1 4 2 5( ) ( ) ( ) ( )

T T T T
t t t tµ δ β δ β

∞ ∞ ∞ ∞
≤ + +ε ε ε ε  

 

3 6 4 1 5 2

6 3 1

               ( ) ( ) ( )
               ( )

T T T

GT

t t t
t

δ β δ β δ β
δ β ψ

∞ ∞ ∞

∞

+ + +
+ +

ε ε ε
ε

.(28) 

Rearranging (28) leads to, 
( )1 4 2 5 3 6 4 1 5 2 6 3 11 ( ) GT

tµ δ β δ β δ β δ β δ β δ β ψ
∞

− − − − − − − ≤ε .(29) 
Note that 

1_ 1Gψ  and 
1Gψ  consist of bounded values.  

Similarly, for the constrained space case of group 2 
Lemma 2-2 can be obtained as below.  Its derivation 
is shown in Appendix. The only difference is that 
there exists an external force in the constrained space 
case. 
 

Lemma 2-2. ε- nL∞ Norm Bound Inequality 
(Constrained Space Case): In the case of  n  degree 

                                                 
4 Semiglobal stability is a kind of asymptotic stability. 
5 ( ) ( )

T T
t L t

∞ ∞
• − ≤ •  is always established. 

of freedom robot under NAC/TDC in constrained 
space, if the desired trajectory and its derivatives are 
in nL∞

space and the external force and the time 
difference of uncertainty including disturbance are 
also in nL∞

space, i.e., ( ) nt L∞∈desθ , ( ) nt L∞∈desθ , ( ) nt L∞∈desθ , 
nL∞∈sτ  and nL∞∈w , then the following inequality can 

be obtained. 
 

( )1 4 2 5 3 6 4 1 5 2 6 3 21 ( ) GT
tµ δ β δ β δ β δ β δ β δ β ψ

∞
− − − − − − − ≤ε , 

where

 
( )

( ) (

1
2

1 1

1
1 4 4 4

2 5 5 5 3 6

  ( ) ( )

    ( ) ( )

     ( ) ( ) ( )
    + ( ) ( ) ( )

G

t

t L

T T

T TT

t t t t t L

t t t t d

t t t t
t t t

ψ

σ σ

δ η γ ρ
δ η γ ρ δ η

−

− −

−
−

∞ ∞∞

∞ ∞∞

= − + −

+ + ∫

+ + + +

+ + +

r des v des

d v s s

s des s

des s des

∆c θ ∆G θ M ( )M( )θ( )

M ( ) Q ( )+G( )+w( ) ∆G M τ

M ( )τ θ τ
θ τ θ

) ( )
( ) (

)

6 6 4 1 1 1

5 2 2 2 6 3

3 3

    ( ) ( ) ( )
   ( ) ( ) ( )

    ( )

TT T

T TT

T

t t t
t t t

t

γ ρ δ η γ ρ
δ η γ ρ δ η
γ ρ

∞∞ ∞

∞ ∞∞

∞

+ + + + +

+ + + +

+ +

s des s

des s des

s

τ θ τ
θ τ θ

τ

.(30) 

 
 

3.4 Sufficient Stability Conditions for NBBIC 
 

We have shown the inequalities of ( )
T

t
∞

ε  by Lemma 
2-1   and Lemma 2-2. The sufficient condition for 
these inequalities to have upper bounds are shown 
below.  

1 4 2 5 3 6 4 1 5 2 6 3 1µ δ β δ β δ β δ β δ β δ β+ + + + + + <      (31) 
If (31) holds, ( )t

∞
ε  has an upper bound because all 

terms of (31) are not related to T, which is a symbol 
of truncated norm. The fact that ( )t

∞
ε  can have an 

upper bound means that the time-delay estimation 
error ( )tε  of (15) can be bounded.  Therefore, in the 
case of group 1 and group 2, stability can be 
guaranteed if we set control gains to satisfy (31).  In 
the case of group 3, a robot is passive since there is 
no control input applied to it; hence, the system is 
stable (Ortega, and Spong, 1988).  Therefore, we can 
obtain the following stability theorem for the 
nonlinear bang-bang impact control from Lemma 1, 
2-1 and 2-2. 
 

NBBIC Stability Theorem: The sufficient conditions 
for stability under the nonlinear bang-bang impact 
control become: 
 

1 4 2 5 3 6 4 1 5 2 6 3 1µ δ β δ β δ β δ β δ β δ β+ + + + + + <  
 
 
3.5 Physical Implication of NBBIC Stability 

Condition 
 
In order to understand the physical implication of 
NBBIC stability theorem, we substitute the norm 
values of (22) for free space case and of (30) for 
constrained space case into (31).  Then we get, 
 

           ( )2
4 1 5 2 6 3

(1 )
1i

c
β κ β κ β κ∞

−
<

+ + +
-1I - M M

,    
(32) 

where  

( )
( )

1

1 2
1

2 2

3 2

5 6 12 2 2
( ) ( ) ( ) ( ) + ( ) ( )

s i

s i

i

i i i

M
M

c t t t t t t

κ
κ
κ

β β β

−

−

∞ ∞ ∞

=
=
=

= +

v des

v des des r

v des

-1 -1 -1

2 1 2

G K
G B +K -c

G +B
M q M q M q

 



     

2 32 2
    ( ) ( ) ( ) ( )

i i
t t t tβ β

∞ ∞
+ +-1 -1

1M q M M .          (33) 
 

Note that c in (33) is composed of the differences of 
bounded values such as , 1M  q , and 

2q  and the 
bounded values multiplied by small values 

5β and 

6β  which are the time integral of difference of 
impulse response matrix for stable linear system.  
Therefore, c is negligible during the impact and 
constrained motion when there is not much change in 
Coriolis and centrifugal forces between time t and t-L 
(Pagilla, and Yu, 2001; Walker, 1999).   However, c 
is not negligible during a certain constrained motion 
which involves significant changes in these state 
dependent forces between time t and t-L.   
 
When these terms are negligible, NBBIC is always 
stable if  M = M since it makes the left hand side of 
(32) zero. In reality, however, it is difficult to 
estimate robot inertia M accurately. When the inertia 
estimate M  differs from the actual inertia M , the 
stable range of M is determined by the delay time L 
and control gains.  It can be deduced from (32) that 
the more M  differs from M, the smaller L should be 
to achieve stability.  It is noted that the system under 
NBBIC is stable regardless of controller gains if the 
estimation of inertia is accurate and a delay time L is 
small.  It is a natural conclusion because the NAC is 
designed to observe the passivity constraint.  
However, as the degrees of freedom of a robot 
increases, it becomes more difficult to obtain 
accurate estimation of robot inertia.  
 
When there are significant changes in Coriolis and 
centrifugal forces between time t and t-L, i.e., c is not 
negligible as in free space and a certain constrained 
motion, it imposes more strict constraints on the 
range of M  and L. For example, if a robot under 
NBBIC approaches an environment from free space 
to perform a contact task on a fixed stiff wall, the 
stability condition for free space motion is more 
difficult to satisfy than that of such constrained 
motion. It was confirmed by experiments. Our 
experiments demonstrate that the nonlinear bang- 
bang impact controller can make stable contact with 
a stiff environment without changing gains by using 
gains set for stable free space motion (Lee, et al., 
2003a, b).  It shows that if the controller gains make 
stable free space motion, they can also make stable 
constrained space motion which experiences less 
change in Coriolis and centrifugal forces than those 
in free space. 
 

4. EXPERIMENT 
 
In this section, experiments are performed to verify 
the NBBIC stability theorem derived in Section 3. 
 
Experiments are performed to verify the proposed 
stability criterion by using SCARA type two D.O.F. 
robot with sampling time L=1msec (fig. 1).  
First, one D.O.F experiment is conducted using only 
the 2nd axis of the robot. The objective is to drive 
robot 0.0746m with desired velocity of 0.1865m/s, 
i.e., 0.0728m in free space and 0.0018m after contact 
with silicon wall. The theoretical stable range of the 

inertia estimate M  is 2 20.015 0.135 kg m M kg m⋅ ≤ ≤ ⋅  
with Ms=0.07 kg·m2, Gv=6 N·m/s, Bdes=30 N·m/s, and 
Kdes=140 N·m. The experimental results in fig.2 show 
that stable response is obtained with lower stability 
bound. But, the stable upper bound of M  is observed 
to be 0.036 kg·m2. Second, two D.O.F. experiments 
are performed with the same stable gains used for the 
one D.O.F. experiments. M  is selected as a constant  
diagonal matrix ( 1 2[ , ]diag α α ) and the maximum 
stable gain of 2

2 0.030 kg mα = ⋅  is used. With these 
values, the theoretical stable range of 1α is 

2 2
10.34 kg m 0.82 kg mα⋅ ≤ ≤ ⋅ . The lower bound of 

0.34 kg·m2 produces stable response as shown in 
fig.3.  However, it is observed that the maximum 
stable upper bound is 0.5 kg·m2 instead of 0.82 kg·m2.  
It appears that the stable upper bound is limited by 
noise effect due to acceleration signals and etc.  If we 
employ a first order digital low pass filter with the 
cutoff frequency λ  to cancel noise, control input 
changes accordingly as below (Youcef-Toumi, and 
Wu, 1992) 

( ( )) 't t t L t L= − − + −τ( ) M u( ) θ τ ( ) ,          (34) 
' 1'( ) ( ) '( )    ( ' )

1 ' 1 '
t t t L Lλ λ λ

λ λ
= =τ τ + τ -

+ +
,  (35) 

where τ  is the input  to the filter and 'τ  is the 
outputfrom the filter. Substituting (34) into (35) leads  
to the following control input 
 

'' ( ( )) '
1 '

t t t L t Lλ
λ

= − − + −τ ( ) M u( ) θ τ ( )
+ .  

(36) 

Thus the use of a first order digital low pass filter has 
the same effect as lowering M . The noise effect is 
more pronounced with higher gains of M  since they 
excite high frequency dynamics of robots. That is the 
reason why the stable upper bound is lower than the 
theoretical one. If the original upper bound of 
M which is calculated from equation  (32)is 

maxM and 
dominant noise frequency of ith joint is

iλ , then the 
revised upper bound(

max'M  ) becomes:  

      1
max max

1

' , ,
1 1

n

n

L Ldiag
L L

λ λ
λ λ

  
=    + +  

M M    (37) 

We examine the noise effect of acceleration signal on 
overall performance of NBBIC. The Laplace 
transform of NAC/TDC control input of (34) without 
using low-pass filter is 
              { }2 Ls Lss s s e s e s− −+τ( )=M u( )- θ( ) τ( ) .           (38) 
After some manipulation the following equation is 
obtained. 

( ) { }2
1

1
Ls

Ls
s s s e s

e
−

−−
τ( )= M u( )- θ( ) .           (39) 

When L is small, the following approximation can be 
used ( by Taylor expansion ) 

( )1 Lse Ls−− ≈   .                          (40) 
Inserting (39) into (38) yields 

( )2
1

Lss s s e s
Ls

−≅τ( ) M u( )- θ( ) .               (41) 

Likewise, in discrete time domain, it can be shown 
that the acceleration signal is accumulated to become 
approximately equivalent to a velocity signal as 
below.  



     

 
Figure 1. SCARA Robot Experimental setup 
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=M u( )-θ( - ) u( - )-Mθ( - ) +τ( - )

=M u( )-M θ( - )

.(42)                   

Equations (40) and (41) show that the acceleration 
term is integrated/accumulated over to the last 
sampling time, that is, an acceleration term becomes 
in fact a velocity term when NAC/TDC is actually 
implemented. It is as if the acceleration signal is low-
pass-filtered as shown in (40). Therefore, it can be 
said that the noise effect of acceleration signals does 
not seriously affect the overall performance of 
NAC/TDC even though it reduces the stability 
bounds. 
 
 

5. CONCLUSION 
 
In this paper, we derived sufficient stability 
conditions for the nonlinear bang-bang impact 
control based on nL∞  space analysis. The stability 
condition has a concise form and gives 
straightforward physical insight.  The analysis shows 
that when the inertia estimate M  differs from the 
actual inertia M , the stable range of M is determined 
by a delay time L and control gains.  It also shows 
that it is more difficult to achieve stability in free 
space than in a certain constrained motion, which 
does not involve significant changes in Coriolis and 
centrifugal forces between time t and t-L. 
Experimental results validate the sufficient stability 
conditions. Experiments show that the stability 
conditions are not stringent allowing a broad range of 
gains and parameter estimation errors.  In reality, 
however, experimental noises reduce the stability 
region and it is more apparent as the order of systems 
increases. NBBIC can be used for robot interactions 
with unknown physical environments such as robots 
 

 
    (a) 20.013 kg mM = ⋅       (b) 20.036 kg mM = ⋅   

Figure 2. Contact force (one D.O.F) 

  
 (a) 2

1 0.34 kg mα = ⋅             (b) 2
1 0.5 kg mα = ⋅  

Figure 3. Contact force (two D.O.F)  

in space exploration, cooperative robot tasks and 
mobile robots.  NBBIC can also be used for 
micro/nano manipulations using an atomic force 
microscope, where real time vision is unavailable 
during contact manipulation without an additional 
vision system. 
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Appendix 
 
 

Proof of one degree of freedom system is shown in 
(Kang, et al., 2004). For multi-degree of freedom 
case, proof  of Lemma 2-2 and finite number of 
switching will be available upon request. 


